Enrollment No:	Exam Seat No:
----------------	---------------

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Real Analysis

Subject Code: 4SC06RAC1 Branch: B.Sc. (Mathematics)

Semester: 6 Date: 23/04/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14
a)	Define : Lower bound of Sequence	(01
b)	Write the range of the sequence $\{1+(-1)^n\}$.	(01
c)	Define: Convergent sequence	(01
d)	True or false: Every convergent sequence is bounded.	(01
e)	Define: Infinite series	(01
f)	Write the necessary condition for the convergent of series.	(01
g)	Find $\overline{A_3}$ for the sequence $a_n = \left\{ -2, -1, 1, \frac{1}{2}, \frac{1}{4}, \dots \right\}$.	(01
h)	Define: p-series.	(01
i)	State Darboux's theorem for integrals.	(01
j)	True or false: f is bounded and integrable on $[a,b]$, if $ f $ is bounded and integrable	

on
$$[a,b]$$
.

k) Define: Primitive of the function (01)

1) What is norm of partition
$$P = \{1, 1.1, 1.4, 1.5, 1.6, 1.75, 1.85, 2\}$$
 of $[1, 2]$? (01)

(01)

m) True or false: If
$$U(P, f) \le S(P, f)$$
 then the function is Riemann integrable function. (01)

n) Define:
$$L(P, f)$$
 (01)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

- a) State and prove Bolzeno weiestrass theorem for sequence. (05)
- **b)** State and prove first fundamental theorem of calculus. (05)

c) Verify:
$$\inf a_n \le \underline{\lim} a_n \le \overline{\lim} a_n \le \sup a_n$$
 for the sequence $\left\{ \frac{(-1)^n}{n^2} \right\}$. (04)

Q-3 Attempt all questions

- a) Define: Oscillation of f(x) in [a,b] (02)
- b) Prove that any bounded and monotonic sequence is convergent (04)
- c) Which of the following sequences are convergent, divergent, oscillating finitely, oscillating infinitely, bounded and unbounded? (08)

1)
$$\left\{-2, -1, 0, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$$

2)
$$\{n^2\}$$

$$3) \quad \left\{ \frac{\left(-1\right)^{n-1}}{n!} \right\}$$

$$4) \left\{ \left(1 + \frac{1}{n}\right)^n \right\}$$

Q-4 Attempt all questions

- a) Which of the two basic series we consider for the comparison test of kind one? (02)
- **b**) Show that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is convergent and $\lim_{n} \left(1 + \frac{1}{n}\right)^n$ lies between 2 and (05)
- c) State and prove Cauchy's integral test for convergence of series. (07)

Q-5 Attempt all questions

- (14)
- a) State Cauchy's general principle of convergence of sequence. (02)
- **b)** Show that f(x) = 3x + 1 is Riemann integrable on [0,k] and $\int_{1}^{2} f(x) dx = \frac{11}{2}$. (04)
- c) Test the convergence of the following series. (08)

1)
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

2)
$$\sum \frac{(-1)^{n-1}}{n^2}$$

3)
$$\sum \frac{x^n}{n}$$

4)
$$\frac{1^2 \cdot 2^2}{1!} + \frac{2^2 \cdot 3^2}{2!} + \frac{3^2 \cdot 4^2}{3!} + \dots$$

Q-6 Attempt all questions

(14)

a) State and prove Leibnitz test for alternating series.

- (06)
- **b**) Write the statement of the following test for the convergence of series:

(04)

- 1) D'alembert's ratio test
- 2) Raabe's test
- c) Show that $\sum \frac{(-1)^{n-1}}{\log(n+1)}$ is conditional convergent. (04)

Q-7 Attempt all questions

(14)

a) Define: Riemann lower sum of the function on [a,b]

(02)

b) If f is integrable on [a,b] then prove that f^2 is integrable on [a,b].

- (05)
- c) If f_1 and f_2 are two integrable functions on [a,b] then prove that $f_1 + f_2$ is also
- (07)

integrable on [a,b] and $\int_a^b (f_1 + f_2) dx = \int_a^b f_1 dx + \int_a^b f_2 dx$.

Q-8 Attempt all questions

- a) If $\{a_n\}$ be any sequence then $\underline{\lim}(-a_n) = -\overline{\lim}(a_n)$ (02)
- **b)** Define absolutely convergent series and show that the series $\sum \frac{(-1)^{n-1}}{n \cdot 2^n}$ is absolutely convergent. (05)
- c) Show that $\int_{0}^{t} \sin x \, dx = 1 \cos t.$ (07)